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Abstract 

We address the problem of finding an unbiased estimate of the plant 
state given that the data available is dynamic, noisy, and given in a mul- 
tiplicity of representations. The approach proposed in the study is unique 
because it does not attempt to transform the data to a common repre- 
sentation. Rather we establish a framework, which we call the Multiple 
Agent Hybrid Estimation Architecture, in which we allow heterogenous 
data to flow between individual agents in the network to improve their 
individual estimates of the current plant state. 
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1    Introduction 

The problem that we are addressing in this paper is the following. Suppose we 
are given a suite of hetereogeneous sensors and their controlling agents which are 
measuring the dynamics of a plant. For example, in the case where the agents 
are monotoring a battlefield, the agents may be providing radar samples, scout 
information, or satellite information. We assume that each sensor agent has a 
model of the plant dynamics relative to its own domain. Moreover, we assume 
that the sensor agents interact with each other in real time via a communica- 
tions network. The fundamental problem is to find an unbaiased estimate of 
the plant state given that the data available is dynamic, noisy, and given in a 
multiplicity of representations. The approach proposed in the study is unique 
because it does not attempt to transform the data to a common representation. 
Rather we establish a framework which we call the Mutiple Agent Hybrid Es- 
timation Achitecture (MAHEA), see figure 1, in which we allow hetereogenous 
data to flow between indivdual agents in ehe network to improve their individual 
estimates of the current plant state. 

The outline of this paper is as follows. We start by providing a brief descrip- 
tion of a MAHEA agent, the basics of a MAHEA agent models of the plant and 
the procedure it uses to improve the its plant estimate over time. Basically each 
agent of MAHEA, formulates a relaxed variational optimization problem whose 
successful resolution produces an estimate of the plant. Each agent operates as 
a real-time theorem prover in the domain of relaxed variational theory [35]. In 
section 2, we shall give more details on the formulation of the relaxed variational 
optimization problem and how the agent solves this problem. In section 3, we 
provide a general description of how the agent theorem prover operates. We 
note that the operation of the agent described in sections 2 and 3 are esentially 
the same as the operation of an agent in our Multiple Agent Hybrid Control 
Architecture, see [24, 25], which can be used to control a variety of processes 
including automated manufacturing , mutimedia networks, flexible gun tubes, 
and flight planning for missiles, and traffic management of highways. 

The new results of this paper is presented in sections 4 and 5. In section 4, we 
shall show how we can construct a special optimization criterion for the plane es- 
timatation optimization problem which we call the Estimation Lagrangian. The 
tvpe of Lagrangian that we need to construct is special for the plant estimation 
problem in that we want the Lagrangian to be 0 at each point where the agent 
has reached the desired estimate of the plant state. Such Lagrangians are not 
suitable for most control problems. Finally in section 5, we shall describe our 
mechanism to solve the problems of agent sychronization and how agents with 
different models can produce coherent (synchronous) and compatible (common 
view) estimates of a plant. Our solution to these problem uses the Noether 
invariance conditions in a novel way. 
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Figure 1: Agent Framework 

2    The Multiple Agent Hybrid Estimation Ar- 
chitecture 

In this section, we describe the main operational and functional characteristics 
an agent in a MAHEA network. As we mentioned in the introduction, our 
Multiple Agent Hybrid Estimation Architecture is implemented as a distributed 
system composed of agents and a communication network which we call the 
logic communication network. The architecture realizing this system operates 
as an on-line distributed theorem prover. At any update time, each active agent 
generates estimation actions as side effects of proving an existentially quantified 
subtheorem (lemma) which encodes the model of the plant as viewed by the 
agent. The conjunction of lemmas at each instant of time, encodes the desired 
behavior of the"entire network . Each agent of MAHEA, consists of five modules: 
a Planner, a Dynamic Knowledge Base, a Deductive Inferences an Adapter and 
a Knowledge Decoder. We briefly overview the functionality of an agent in 
terms of its modules . 

The basic architecture of an estimation agent is pictured in figure 2. The 
agent consists of 5 modules with the following functionality: 

1. Planner The Planner constructs and repairs the agent state estimation 
optimization criteria which we refer to as the Estimation Lagrangian as- 
sociated with the agent. In particular, the Planner generates a statement 
representing the desired model of the estimation system as an existentially 
quantified logic expression herein referred to as the Estimation Statement. 



2. Inferencer The Inferencer determines whether there is a state estimate 
for the agent's relaxed variational state estimation problem which is a 
near optimal solution where the agent's Estimation Lagrangian is used 
as a cost function. If there is such a solution, the agent infers a near 
optimal estimation and sends data to the other agents. Othewise it infers 
failure terms and a new state for the agent and reports the failure to 
the other agents. In particular, the Inferencer determines whether the 
Estimation Statement is a theorem in the theory currently active in the 
knowledge base. If the Estimation Statement logically follows from the 
current status of the Knowledge Base, the inferencer generates, as a side 
effect of proving this Estimation Statement to be true, the current state 
estimate of the Battlefield. If the Estimation Statement does not logically 
follow from the current status of the Knowledge Base, that is, the desired 
behavior is not realizable, the inferencer transmits the failed terms to the 
Adapter module for replacement or modification. 

3. Adapter The Adapter repairs failure terms and constructs correction 
terms. 

4. Knowledge Base The Knowledge Base stores and updates the agent' 
plant model and constraints. The Knowledge Base also stores the re- 
quirements of operations or processes within the scope of the agent's esti- 
mation problem. It also encodes system constraints, interagent protocols 
and constraints, sensory data, operational and logic principles and a set of 
primitive inference operations defined in the domain of equational terms. 

5. Knowledge Decoder The Knowledge Decoder receives and translates 
the other agent's data. 

To better understand, how these five modules function, we first need to 
discuss the basic elements of an agent's model and how it behaves. We will 
discuss this model in the next section and we will then follow with a more 
detailed discussion of the five modules of a MAHEA agent. 

2.1    An MAHEA Agent's Model 

In general, a hybrid system has a hybrid state, the simultaneous dynamical 
state of all plants and digital control devices. Properly construed, the hybrid 
states will form a differentiable manifold which we call the carrier manifold of 
the system. To incorporate the digital states as certain coordinates of points of 
the carrier manifold, we "continualize" the digital states. That is, we view the 
digital states as finite, real-valued, piecewise-constant functions of continuous 
time and then we take smooth approximations to them. This also allows us to 
consider logical and differential or variational constraints on the same footing, 
each restricting the points allowed on the carrier manifold. In fact, all logical 
or discontinuous features can be continualized without practical side-effects. 
This is physically correct since for any semiconductor chip used in an analog 
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device, the zeros and ones are really just abbreviations for sensor readings of 
the continuous state of the chip. Every constraint of the system, digital or 
continuous, is incorporated into the definition of what points are on the carrier 
mainifold. Lagrange constraints axe regarded as part of the definition of the 
manifold as well, being restrictions on what points are on the manifold. 

More specifically, let .4<, i = l,...,N{t) denote the agents active at the 
current time t . In our model, t takes values on the real line. At each time t. the 
status of each agent in the network is given by a point in a locally differentiable 
manifold M [23]. The Estimation Lagrangian L* of an active agent A{ is given 
by a continuous function, 

Li : M x T -> BT (1) 

where T is the real line (time space) and R+ is the positive real line. A point p 
in the manifold M is represented by a data structure of the form: 

p(id,pTOc(?roc-data),estimatt(&stimation-dcita),in(synch.da.ta), mp(mvlt.data))   (2) 

Here id is an identifier taking values in a finite set ID, procQ is a relation 
characterizing plant processes status which depends on a list of parameters 
labeled procdata, whose parameters define the operational, load, and timing 
characteristics of the process involved. The relation estimate captures attributes 
of the plant being represented which depends on a list of parameters labeled 
tstivn.ation.data whose parameters, among other things, characterize various 
constraints of the plant representation of an agent at a level of abstraction 
compatible with the logic communication network.  The relation in() carries 



synchronization information of the logic communication network. This includes 
information such as priority level, connectivity and time constants. Finally, the 
relation mpQ carries multiplicity information, that is, it represents the level of 
network usability at this point. The associated parameter list, mult-data, is 
composed of statistical parameters reflecting the logic network's load. 

From an agent's point of view, the dynamics of the plant is characterized 
by certain trajectories on the manifold M. These trajectories represent the 
agent estimate of the state of the plant plus the flow of information through the 
network and its status. Specifically, we need to define two items: 

(i) The Estimation Lagrangian functions : 

{L<(p,i) :*'€/(*)} (3) 

where I{t) is the set of active agents at time t and 

(ii) the actions or estimates issued by the agents. 

We will see shortly that these actions are implemented as infinitesimal trans- 
formations defined in M. The general structure of an Estimation Lagrangian 
function in (3) for an active agent i at time t is given in (4) below: 

Li(p,t) = Fi{Ui,L,ai)(p,t) ' (4) 

where F; is a smooth function, L is the vector of Estimation Lagrangian func- 
tions, Ui is the state estimation error function, and ou is the command action 
issued by the i-th agent. We will devote the rest of this subsection to charac- 
terizing this model. 

We start with a discussion of the main characteristics of the manifold M. 
In general a manifold M is a topological space (with topology 0 ) composed of 
three items: 

(a) A set of points of the form of (2). 

(b) A countable family of open subsets of M, Ui such that 

[jU^M. 
i 

(c) A family of smooth homeomorphisms,{©i : fa : U, -+ VJ}, where for each j, 
Vj is an open set in Rk. The sets Ui are referred to in the literature as 
coordinate neighborhoods or charts. For each chart Uj the corresponding 
function fa is referred to as its coordinate chart. 

The coordinate chart functions satisfy the following additional condition: 

Given any charts Ui and Uj such that V\ n Uj # 0, the function 
fa o <p~l : <pj(Ui n Uj) -> <t>j{Ui n Uj) is smooth. 



In the literature, one usually finds an additional property, which is the Haus- 
dorff property in the definition of manifolds [24]. Since this property does not 
hold in our application we will not discuss it. 

Now we proceed to customize the generic definition of the manifold to our 
application. We start with the topology © associated with M. We note that the 
points of M have a definite structure, see (2), whose structure is characterized 
by the values, or more precisely by intervals of values, of the parameters in the 
lists proc.data, estimation-data, synch-data and mult-data. The number of these 
parameters equals k. The knowledge about these parameters is incorporated 
into the model by defining a finite topology ft on Rk [4]. 

The open sets in ft are constructed from the clauses encoding what we know 
about the parameters. The topology 0 of M is defined in terms of ft as follows: 
For each open set W in ft such that W C V} C Rk, we require that the set 
o~l(W) be in 0. The sets constructed in this way form a basis for 0 so that 
a set U C M is open if and only if for each p € U, there is j and an open set 
W 6 ft such that W C Vi and p <= <t>Jl(W). 

To characterize the actions commanded by a MAHEA agent we need to 
introduce the concept of derivations on M. Let Fp be the space of real valued 
smooth functions / defined in a neighborhood a point p in. M. Let / and g be 
functions in Fp. A derivation v of Fp is a map 

v.Fp^Fp 

that satisfies the following two properties: 

v{f + g)(p) = W) 4- v{g))(p) (Linearity) (5) 

v(f ■ g)(p) = (v(f) ■ y + / ■ v(9))(p)     ( Leibniz Rule) (6) 

Derivations define vector fields on M and a class of associated curves called 
integral curves [25]. Suppose that C is a smooth curve on M parameterized by 
yj : I -+ M where I a subinterval of R. In local coordinates, p = (p1, ...,pk), 
C is given by k smooth functions w(t) = (i)l{t),... ,uk{t)) whose derivative 
with respect to t is denoted by Tp{t) = (ipl (t),..., rjjk(t)). We introduce an 
equivalence relation on curves in M as the basis of the definition of tangent 
vectors at a point in M [13]. Two curves ViW and wo{t) passing through a 
point p are said to be equivalent at p (notation: rp\(t) ~ V2(0)i ^ tnere exists 
n i r2 € -f such that 

Wi(n) =t/)2(r2) =p (7) 

Mi\) = Mvi)- (8) 
Clearly, ~ defines an equivalence relation on the class of curves in M passing 

through p. Let [ip] be the equivalence class containing i>. A tangent vector to 
[ib] is a derivation, v\v, such that in local coordinates (p1,... ,p*), it satisfies the 
condition that given any smooth function / : M -> R, 

df(p) "iP(/)(p)=£^'«-0 0) 



where p = tb(t). The set of tangent vectors associated with all the equivalence 
classes at p defines a vector space called the tangent vector space at p, denoted 
by TMP. The set of tangent spaces associated with points in M can be "glued" 
together to form a manifold called the tangent bundle which is denoted by TM. 

TM = (J TMP 
p£m 

For our purposes, it is important to specify explicitly how this glueing is imple- 
mented. This will be explained below after we introduce the concept of a vector 
field and discuss its relevance in the model. 

A vector field on M is an assignment of a derivation v\p to each point p of 
M which varies smoothly from point to point. That is, if p = (pl,-..,pk) are 
local coordinates, then we can always write v\p in the form 

i* 
dpi 

Then v is a vector field if the coordinate functions A,; are smooth. 
Comparing (9) and (10) we see that if w is a parameterized curve in M whose 

tangent vector at any point coincides with the value of v at a point p = w{t), 
then in the local coordinates p = (t/;1(t),..., Vk{t)), we must have 

&(t) = \j(p)forj = l,...,k. (11) 

In our application, each command issued by the MAHEA agent is imple- 
mented as a vector field in M. Each agent constructs its command field as a 
combination of 'primitive' predefined vector fields. Since the chosen topology 
for M. 0, is not metrizable, we cannot guarantee a unique solution to (11) in 
the classical sense for a given initial condition. However, they have solutions in 
a class of continuous trajectories in M called relaxed curves [29]. In this class, 
the solutions to (11) are unique. We discuss the basic characteristics of relaxed 
curves as they apply to our process control formulation and implementation 
in Section 3. Next, we describe some of their properties as they relate to our 
plant model and estimation process. For this objective, we need to introduce 
the concept of flows in M. 

If v is a vector field, any parameterized curve passing through a point p in 
M is called an integral curve associated with u, if in local coordinates (5) holds. 
An integral curve associated with a field v, denoted by #(i,p) is termed the flow 
generated by v if it satisfies the following properties: 

$(i, ${r,p)) = $(t 4- T,p)       (semigroup property) (12) 

$(0,p) =p       (initial condition) 

and 

-j7V{t,P) = v !*(t,p)        (Sow generation) 
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Figure 3: Conceptual illustration of agent action schedule 

Now we are ready to customize these concepts for our model. Suppose that 
a MAHEA agent A{ is active. Let A > 0 be the width of the current decision 
interval, [t, t + A). Let Ui(p, t) be the state estimation error at the beginning of 
the interval. Agent .4* has a set of primitive actions: 

{vi,i : j = 1. • • •, "i where Ui,j|p € TAfp for each pern} (13) 

During the interval [t,t •+• A), agent A* schedules one or more of these actions 
to produce a flow which will reduce the state estimation error. In particular, 
Ai determines the fraction a,-,,,-(p, t) of A that action Vij must be executed as a 
function of the current estimation requests Sr,i{^ P) anc^ t^ie vector of Estimation 
Lagrangians L(jp.t) = (Li{p,t),...,LN(D) of the active agents in the MAHEA 
network. Figure 3 conceptually illustrates a schedule of actions involving three 
primitives. We will use this example as means for describing the derivation of 
our model. The general case is similar. 

The flow <ki associated with the schedule of Figure 3 can be computed from 
the flows associated with each of the actions: 

*i(T,p) = < 

C   *„i(n(r,p)ift<r<t + A<.ni 

** ., (T, *„,.,., {T,p)) if t -r Aiini <T<t + Aiini -!- A^, 
*^-,(r,*w.M(r,*v«..l(rIp))) 

if t + Ai,ni 4- A,,n, < T < t + Ai,ni + A<,„, + Ai,„3 

(14) 
where A = da,ni + Ai,„2 + A<,„, and <*,„, + a*,«, + ailBs = 1. We note that 
the flow $i given by (14) characterizes the evolution of the process as viewed 



by agent .4*. The vector field Vi\p associated with the flow *, is obtained by 
differentiation and the third identity in (12). This vector field applied at p is 
proportional to 

Vi\v = [vi,ni,[vi,n7,Vi.n3}] (15) 

where [.,.] is the Lie bracket due to the parallelogram law, see [38]. The Lie 
bracket is defined as follows: Let v and w, be derivations on M and let / : 
M -*• R be any real valued smooth functions. The Lie bracket of v and w is the 
derivation defined by 

.{«,«/](/) =v(ti/(/))-u/(t/(/)), 

see [9]. 
Thus the composite action Vi\p generated by the i-th agent to improve the 

state estimation is a composition of the form of (15). Moreover from a version 
of the Chattering lemma and duality [18j, we can show that this action can be 
expressed as a linear combination of the primitive actions available to the agent 
as follows. 

j 

£7J(a)    =    1 
j 

with the coefficients 7J determined by the fraction of time that each primitive 
action Vij is used by agent i. 

The effect of the field defined by the composite action Vi\p on any smooth 
function (equivalent function class) is computed by expanding the right hand 
side of (14) in a Lie-Taylor series [9]. In particular, we can express the change 
in the state estimation error Ui due to the flow over the interval A in terms of 
Vi\p. The evolution of the state estimation error Ui over the interval starting at 
point p is given by 

Ui(t + XJ') = Ui{t,*i{t + Xp)) (17) 

Expanding the right handside of (17) in a Lie-Taylor series around (t,p), we 
obtain, 

NP(£/-t(p,0))JA> 
Ui{t + Xp") = J2 ;'! 

where 

Wrf^t(w-))"li) (18) 
and 

(wi|p)°(/) = /• for all / 

In general, the series in the right handside of (18) will have countable many 
non-zero terms.   In our case, since the topology of M is finite because it is 

10 



generated by finitely many logic clauses, this series will have only finitely many 
non-zero terms. Intuitively, this is so because in computing powers of deriva- 
tions (i.e., limits of differences), we need only to distinguish among different 
neighboring points. In our formulation of the topology of M, this can only be 
imposed by the information in the clauses of the agent's Knowledge Base. Since 
each agent's knowledge base has only finitely many clauses, there is a term in the 
expansion of the series in which the power of the derivation goes to zero. This 
is important because it allows the series in the right handside to be effectively 
generated by a locally finite automaton. We will expand on the construction 
of this automaton in the next section when we discuss the inference procedure 
carried out by each agent. 

We note that given the set of primitive actions available to each agent, the 
composite action is determined by the vector of fraction functions Q;- . We will 
see in the next section that this vector is inferred by each agent from the proof 
of existence of solutions of an optimization problem. 

Now we can write the specific nature of the model formulated in expression 
(4). At time t and at point p S M the estimation error function of agent i is 
given by : 

Ui(p, t) = Ui(p, r) 4- Sr,i(p, t) + £ Qi.Mp, r) (19) 
k 

where t~ is the end point of the previous update interval, Sr.i is the estimation 
request function to agent i, and Qi,k is a multiplier determining the required 
degree of accuracy and the urgency of the estimate of the Agent k that Agent 
i requires. This allocation is determined from the characteristics of the process 
both agents are estimating and from the process description encoded in the 
agent's knowledge base. The actual request from agent k to agent i is thus the 
term, Qi,kLk(p, *")■ The information sent to agent i by agent k is the state 
estimation function Lk(p,t~) at the end of the previous interval. Finally the 
point p € M carries the current estimate of the process monitored by the agents 
appearing in (19). Agent k thus contribute to Agent i's new estimate only if 

Qi,k ± 0. 
This concludes our description of the model. For space considerations, some 

details have been left out. In particular those related to the strategy for activa- 
tion and deactivation of agents. These will be discussed in a future paper. 

3    The Five Modules 
In each agent of MAHEA, the Estimation Statement is the formulation of a re- 
laxed variational optimization problem whose successful resolution produces an 
action schedule of the form of (15). Each agent operates as a real-time theorem 
prover in the domain of relaxed variational theory [35]. A customized version 
of this theory, enriched with elements of differential geometry, equational logic 
and automata theory provides a general representation for the dynamics, con- 
straints, requirements and logic of the Estimation Agent network . We devote 
the rest of this section to the discussion of the main elements of this theory in 

11 



the context of the operational features of MAHEA. The architecture is com- 
posed of two items: The Control Agent, and the logic communication Network. 
These items are illustrated in Figures 5 and 6 respectively. We will disuss them 
in the remaining of this section. 

3.1 Architectural Elements of a control agent: 
We will discuss next the functionality of the five modules of a control agent. 

These are: the Knowledge Base, the Planner, the Inferences the Knowledge 
Decoder and the Adapter. 

3.1.1. Knowledge Base: The Knowledge Base consists of a set of equational 
first order logic clauses with second order extensions. The syntax of clauses is 
similar to the ones in the Prolog language. Each clause is of the form 

Head*-Body (20) 

where Head is a functional form, p(xi, ...xn), taking values in the binary set 
[true, false] with x\, x%,..., xn variables or parameters in the domain M of the 
MAHEA network. The symbol «- stands for logical implication. The variables 
appearing in the clause head are assumed to be universally quantified. The 
Body of a clause is a conjunction of one or more logical terms, 

ei A ej A ... A efl (21) 

where A is the logical 'and'. Each term in (21) is a relational form. A relational 
form is one of the following: an equational form, an inequational form, a covering 
form, or a clause head. The logical value of each of these forms is either true 
or false. A relational form e* is true precisely at the set of tuples of vaiues Si 
of the domain taken by the variables where the relational form is satisfied and 
is false for the complement of that set. Thus for e; = ei{xx,... ,xn), Si is the 
possibly empty subset of Mn , 

Si = {(an, • • •, xn) € Mn : e^(n,..., xn) = true} 

so that 
etOd,. ..,!„) = false if (an,..., xn) € Mn/Si. 

The generic structure of a relational form is given in Table 1. 
Form Structure Meaning         ! 

equational tu(xi,. ...in) =v(ii,.. ■,In) equal 
inequational w{xi,. ...X„) ^V{xi,.. ■.In) not equal 

covering w(xi,. ..,!„) < u(ll,. •,In) partial order 
clause head q(x\,... ,xn) recursion.chaining 

Table 1. Structure of the Relational Form 

12 
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Figure 4: Network of Cooperating Control Agents 

In Table 1, w and v are polynomic forms with respect to a finite set of op- 
erations whose definitional and property axioms are included in Che Knowledge 
Base. A polynomic form vis an object of the form u(si,...,xn) = Hu6nvu^)-'^ 
where P.* is the free monoid generated by the variable symbols {xi,...,xn} un- 
der juxtaposition. The term (V,UJ) is called the coefficient of v at _-•. The 
coefficients of a polynomic form v take values in the domain of definition of the 
clauses. The domain in which the variables in a clause head take values is the 
manifold M described in section 2. The logical interpretation of (20) and (21) 
is that the Head is true if the conjunction of the terms of Body are jointly true 
for instances of the variables in the clause head. M is contained in the cartesian 
product : 

MCGxSxXxA (22) 

where G is the space of goals, S is the space of sensory data, X is the space of 
estimation states and .4 is the space of estimation actions. These were described 
in section 2. G, S, X, and .4 are manifolds themselves whose topologicai struc- 
ture are defined by the specification clauses in the Knowledge Base (see figure 
7)_. These clauses, which are application dependent, encode the requirements on 
the closed-loop behavior of the estimation model of the agent. In fact the closed 
loop behavior, which we will define later in this section in terms of a variational 
formulation, is characterized by continuous curves with values in M. This con- 
tinuity condition is central because it is equivalent to requiring the system to 
look for actions that make the closed loop behavior satisfy the requirements of 
the plant model. 
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The denotational semantics of each clause in ehe knowledge base is one of 
the following: 

1. a conservation principle, 

2. an invariance principle, or 

3. a constraint principle. 

Conservation principles are one or more clauses about the balance of a par- 
ticular process in the dynamics of the system or the computational resources. 
For instance, equation (19) encoded as a clause expresses the conservation of 
error for the Agent i's estimation of the plant. 

consevationjof .error(p, t, [<?;,*], 5r,;, [Lk], A, Ui(t,p)) -+• 

tf(i + 2A,p")=£ 
(Vi\p(Ui(t + Xp')))±J 

;! 

/* encoding of equation (13) */ 

Ui{t + £,i/) = Ui(t,p) + Sr,i(t,P) + '52QukLic(t,p,p) A (23) 
k 

I* encoding of equation (15) */ 

process.evolution{p,t,p") A   /* encoding of equation (13) */ 

consevationjof jerrorip",t 4- 'X [Qitk], Sr,i, [Lk], X Ui(t + 2A,p") 

Conservation principles always involve recursion whose scope is not neces- 
sarily a single clause, as in the example above, but with chaining throughout 
several clauses. 

Invariance principles are one or more clauses establishing constants of the 
evolution of agent's estimation error functions in a general sense. These prin- 
ciples include stationarity, which plays a pivotal role in the formulation of the 
theorems proved by the architecture, and geodesies. For example, in the state 
estimation of multimedia processes,in variant principles specify quality response 
requirements. That is, levels of performance as a function of traffic load that 
the system must satisfy. The importance of invariance principles lies in the 
reference they provide for the detection of unexpected events. For example, in 
the state estimation of a multimedia process, the update time after a request is 
serviced is constant, under normal operating conditions. An equational clause 
that states this invariance has a ground form that is constant; deviation from 
this value represents deviation from normality. 

Constraint principles are clauses representing engineering limits to actuators 
or sensors and, most importantly, rules of engagement. 

The clause database is organized in a nested hierarchical structure illustrated 
in Figure 5. The bottom of this hierarchy contains the equations that character- 
ize the algebraic structure defining the terms of relational forms: an algebraic 
variety [40]. 
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Estimation Performance Specifications 
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Specifications 
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Class 
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Laws of the Variety 

Figure 5: Knowledge Base Organization 

At the next level of the hierarchy, three types of clauses are stored: Generic 
Estimation Specifications, Battlefield Representation and Goal Class Represen- 
tation. 

The Generic Estimation Specifications are clauses expressing general desired 
behavior of the system. They include statements about stability, complexity and 
robustness that are generic to the class of declarative rational controllers. These 
specifications are written by constructing clauses that combine laws of the kind 
which use the Horn clause format described earlier. 

The Process Representation is given by clauses characterizing the dynamic 
behavior and structure of the plant, which includes sensors and actuators. These 
clauses are written as conservation principles for the dynamic behavior and as 
invariance principles for the structure. As for the Generic Estimation Specifi- 
cations, they are constructed by combining a variety of laws in the equational 
Horn clause format. 

The Goal Class Representation contains clauses characterizing sets of desir- 
able operation points in the domain (points in the manifold M). For example, 
Goal Class clauses could specify the type and size of permitted state estimation 
errors. These clauses are expressed as soft contraints; that is, constraints that 
can be violated for finite intervals of time. They expresss the ultimate purpose 
of the controller but not its behavior over time. 

The next level of the hierarchy involves the Estimation Performance Specifi- 
cations. These are typically problem-dependent criteria and constraints. They 
are written in equational Horn clause format. They include generic constraints 
such as speed and time of response, and qualitative properties of state trajecto- 
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ries [35]. Dynamic Estimation Specifications are equational Horn clauses whose 
bodies are modified as a function of the sensor and goal commands. 

Finally, Model Builder Realization clauses constitute a recipe for building a 
procedural model (an automaton) for generating variable instantiation (unifica- 
tion) and for theorem proving. 

3.1.2. The Planner: 
The function of the theorem Planner, which is domain-specific, is to generate, 

for each update interval, a symbolic statement of the desired behavior of the 
system, as viewed, say by the agent j\ throughout the interval. The theorem 
statement that it generates has the following form: 

Given a set of primitve actions there exists state estimation action 
schedule Vi\p of the form (16) and a fraction function differential 
da(-) (Figure 4) in the control interval [t, t 4- A) such that da(-) 
minimizes the functional 

I Li{Vi(T,p),vi\p(GUT,p)))da(j>,dT) (24) 
it 

subject to the following constraints: 

<fc(Si,*i(r + A,p)     =     Gi(t,Xi) 

(local goal for the interval), 

Y,Qi.m(p,t)Lm(p,t)     =     Vi(p,t) (25) 
m 

(interagent contraint, see (19)) 

and 

/ 

t+A 
da(p, dr)      —     1 

t 

In (24), Li is the Estimation Lagrangian of the system as viewed by Agent 
i for the current interval of control [t,t 4- A). This function, which maps the 
Cartesian product of the state and estimation action spaces into the real line 
with the topology defined by the clauses in the knowledge base, captures the 
dynamics, constraints and requirements of the system as viewed by agent i 
The Local Estimation Lagrangian function Lj is a continuous projection in the 
topology defined by the knowledge base (see [32]) in the coordinates of the i-th 
agent of the global Lagrangian function L that characterizes the system as a 
whole. In (25), p represents the state of the process under control as viewed 
by the agent and d is the parallel transport operator bringing the goal to the 
current interval. The operator d is constructed by lifting to the manifold the 
composite flow (see equation (14)). We note that the composite flow and the 
action schedule are determined once the fraction function is known and that this 
function is the result of the optimization (24), (25). In particular, the action 
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A«*nt I B«tiavlor Tr*|«*tory 

Figure 6: Illustration of optimization 

schedule is constucted as a linear combination of primitive actions (see equation 
(16)). 

The term da{-) in (24) is a Radon probability measure [36] on the set of 
primitive estimation actions or derivations that the agent can execute for the 
interval [t,t +■ A). It measures, for the interval, the percentage of time to be 
spent in each of the primitive derivations. The central function of the control 
agent is to determine this mixture of actions for each control interval. This 
function is carried out by each agent by inferring from the current status of the 
knowledge base whether a solution of the optimization problem stated by the 
current theorem exists, and, if so, to generate corresponding actions and state 
updates. Figure 6 illustrates the relations between the primitive actions and 
the fraction of A they are active in the interval [t, t + A). 

The expressions in (25) constitute the constraints imposed in the relaxed op- 
timization problem solved by the agent. The first one is the local goal constraint 
expressing the general value of the state at the end of the current interval. The' 
second represents the constraints imposed on the agent by the other agents in 
the network. Finally, the third one indicates that is a probability measure. Un- 
der relaxation and with the appropriate selection of the domain (see [20], the 
optimization problem stated in (24) and (25) is a convex optimization problem. 
This is important because it guarantees that if a solution exists, it is unique 
up to probability, and also, it guarantees the computational effectiveness of the 
inference method that the agent uses for proving the theorem. 

The construction of the theorem statement given by (24) and (25) is the cen- 
tral task carried out in the Planner. It characterizes the desired behavior of the 
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process as viewed by the agent in the current interval so that its requirements 
are satisfied and the system "moves" towards its goal in an optimal manner. 

3.1.3. Adapter: 
The function under the integral in (24) includes a term, referred to as the 

"catch-all" potential, which is not associated with any clause in the Knowledge 
Base. Its function is to measure unmodelled dynamic events. This monitoring 
function is carried out by the Adapter which implements a generic commutator 
.principle similar to the Lie bracket discused in section 2, see (24). Under this 
principle, if the value of the catch-all potential is empty, the current theorem 
statement adequately models the status of the system. On the other hand, if the 
theorem fails, meaning that there is a mismatch between the current statement 
of the theorem and system status, the catch-all potential carries the equational 
terms of the theorem that caused the failure. These terms are negated and 
conjuncted together by the Inferencer according to the commutation principle 
(which is itself defined by equational clauses in the Knowledge Base) and stored 
in the Knowledge Base as an adaptation dynamic clause. The Adapter then 
generates a potential symbol, which is characterized by the adaptation clause 
and corresponding tuning constraints: This potential is added to criterion for 
the theorem characterizing the interval. 

The new potential symbol and.tuning constraints are sent to the Planner 
which generates a modified Estimation Lagrangian for the agent and goal con- 
straint. The new theorem, thus constructed, represents adapted behavior of the 
system. This is the essence of reactive structural adaptation in the our model 

At this point, we pause in our description to address the issue of robustness. 
To a large extent, the adapter mechanism of each controller agent provides the 
system with a generic and computationally effective means to recover from fail- 
ures or unpredictable events. Theorem failures axe symptoms of mismatches 
between what the agent thinks the system looks like and what it really looks 
like. The adaptation clause incorporates knowledge into the agent's Knowledge 
Base which represents a recovery strategy. The Inferencer, discussed next, ef- 
fects this strategy as part of its normal operation. 

3.1.4. Inferencer: 
The Inferencer is an on-line equational theorem prover. The class of theorems 

it can prove are represented by statements of the form of (20) and (21), expressed 
by an existentially quantified conjunction of equational terms of the form: 

3Z[Wi{Z,p) rek V^p) A ... A Wn(Z,p) rek Vn(Z,p)) (26) 

where Z is a tuple of variables each taking values in the domain D, p is a list of 
parameters in D, and {Wit Vi} are polynomial terms in the semiring polynomial 
algebra: _ 

£><n) (27) 
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with D = {D, (+, •, 1,0)) a semiring algebra with additive unit 0 and multiplica- 
tive unit 1. In (26), reU, i = l,...,n are binary relations on the polynomial 
algebra. Each rek can be either an equality relation (= ), inequality relacion 
(y£ ), or a partial order relation (<). In a given theorem, more than one partial 
order relation may appear. In each theorem, at least one of the terms is a partial 
order relation that defines a complete lattice on the algebra; that corresponds to 
the optimization problem. This latice has a minimum element if the optimiza- 
tion problem has a minimum. Given a theorem statement of the form of (26) 
and a knowledge base of equational clauses, the inferencer determines whether 
the statement logically follows from the clauses in the Knowledge Base, and if 
so, as a side effect of the proof, generates a non-empty subset of tuples with 
entries in M giving values to Z. These entries determine the agent's actions. 
Thus, a side effect is instantiation of the agent's decision variables. In (27), 
n is a set of primitive unary operations, {vi}, the infinitesimal primitive fields 
defined in section 2. Each Vi maps the semiring algebra, whose members are 
power series involving the composition of operators, on Z to itself: 

Vi : D((Z)) H- D((Z)) (28) 

These operators are characterized by axioms in the Knowledge Base, and are 
process dependent. In formal logic, the implemented inference principle can 
be stated as follows: Let 2 be the set of clauses in the Knowledge Base. Let 
=*• represent implication. Proving the theorem means to show that it logically 
follows from S, i.e. 

E => theorem. (29) 

The proof is accomplished by sequences of applications of the following in- 
ference axioms: 

(i) equality axioms 

(ii) inequality axioms 

(iii) partial order axioms 

(iv) compatibility axioms 

(v) convergence axioms 

(vi) knowledge base axioms 

(vii) limit axioms 

The specifics of these inference axioms can be found in [12] where it is shown 
that each of the inference principles can be expressed as an operator on the 
Cartesian product: 

D((W)) x D((W)) (30) 

Each inference operator transforms a relational term into another relational 
term. The inferencer applies sequences of inference operators on the equational 
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Figure 7: Conceptual Structure of the Proof Automaton 

terms of the theorem until these terms axe reduced to either a set of ground 
equations of the form of (31) or it determines that no such ground form exists. 

Zi = ai,ai € D (31) 

The mechanism by which the inferencer carries out the procedure described 
above is by building a procedure for variable goal instantiation: a locally finite 
automaton. We refer to this automaton as the Proof Automaton. This impor- 
tant feature is unique to our approach. The proof procedure is customized to 
the particular theorem statement and Knowledge Base instance it is currently 
handling. The structure of the proof automaton generated by the inferencer is 
illustrated in Figure 7. 

In Figure 7, the initial state represents the equations associated with the 
theorem. In general, each state corresponds to a derived equational form of the 
theorem through the application of a chain of inference operators to the initial 
state that is represented by the path, 

Each edge in the automaton corresponds to one of the possible inferences. 
A state is terminal if its. equational form is a tautology, or it corresponds to 
a canonical form whose solution form is stored in the Knowledge Base. In 
traversing the automaton state graph, values or expressions are assigned to 
the variables. In a terminal state, the equational terms are all ground states 
(see (31))- If the automaton contains at least one path starting in the initial 
state and ending in a terminal state, then the theorem is true with respect to 
the given Knowledge Base and the resulting variable instantiation is a valid 
one. If this is not the case, the theorem is false. The function of the complete 
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Figure 8: Summary of Inferencer Procedure 

partial order term present in the conjunction of each theorem provable by the 
inferencer is to provide a guide for constructing the proof automaton. This is 
done by transforming the equations! terms of the theorem into a canonical fixed 
point equation, called the Kleene-Schutzenberger Equation (KSE) [12], which 
constitutes a blueprint for the construction of the proof automaton. This fixed 
point coincides with the solution of the optimization problem formulated in (24) 
(25), when it has a solution. The general form of KSE is : 

Z = E(p)-Z + T{p) (32) 

In (32), E is a square matrix, with each entry a rational form constructed from 
the basis of inference operators described above, and T is a vector of equational 
forms from the Knowledge Base. Each non-empty entry, Ei.j, in E corresponds 
to the edge in" the proof automaton connecting states i and j. The binary 
operator "■" between E[p) and Z represents the "apply inference toT' operator. 
Terminal states are determined by the non-empty terms of T. The p terms are 
custom parameter values in the inference operator terms in E(-). 

A summary of the procedure executed by the inferencer is presented in Figure 

8. 
We note that the construction of the automaton is carried out from the 

canonical equation and not by a non-deterministic application of the inference 
rules. This approach reduces the computational complexity of the canonical 
equation (low polynomic) and is far better than applying the inference rules 
directly (exponential). 

The automaton is simulated to generate instances of the state, action and 
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evaluation variables using an automaton decomposition procedure [37] which 
requires nlog^n time, where n # of states of the automaton. This "divide and 
conquer" procedure implements the recursive decomposition of the automaton 
into a cascade of parallel unitary (one initial and one terminal state) automata. 
Each of the resulting automata on this decomposition is executed independently 
of the others. The behavior of the resulting network of automata is identical 
with the behavior obtained from the original automaton, but with feasible time 
complexity. 

The inferencer for each Estimation Agent fulfills two functions: to generate 
a proof for the system behavior theorem of each agent generated by the Planner 
(equations (24) and (25)) and to function as the central element in the Knowl- 
edge Decoder. We now describe its function for proving the behavior theorem. 
Later, we will overview its function as part of the Knowledge Decoder.To show 
how the inferencer is used to prove the Planner theorem, (24), (25), first, we 
show how this theorem is transformed into a pattern of the form of (26). Since 
(24). (25) formulates a convex optimization problem, a necessary and sufficient 
condition for optimality is provided by the following dynamic programming for- 
mulation: 

Vi(Y,T)   =   infat J LiWifaY^VilpiGifaptydafrdT) (33) 

—    =   mfaiHW,-j£-,cti) 

where Y(t) = p and r 6 [t. t + A) 

In (33), the function Vit called the optimal cost-to-go function, characterizes 
minimality starting from any arbitrary point inside the current interval. The 
second equation is the corresponding Hamilton-Jacobi-Bellman equation for the 
problem stated in (24) and (25) where H is the Hamiltonian of the relaxed prob- 
lem. This formulation provides the formal coupling between deductive theorem 
proving and optimal control theory. The inferencer allows the real-time opti- 
mal solution of the formal control problem resulting in intelligent distributed 
real-time control of the multiple-agent system. The central idea for infering a 
solution to (33) is to expand the cost-to-go function V{.,.) in a rational power 
series V in the-algebra: 

D(((Y,r))) (34) 

Replacing V for Vj in the second equation in (33), gives two items: a set of 
polynomic equations for the coefficients of V and a partial order expression 
for representing the optimality. Because of convexity and rationality of V, the 
number of equations to characterize the coefficients of V is finite. The resulting 
string of conjunctions of coefficient equations and the optimality partial order 
expression are in the form of (26). 

In summary, for each agent, the inferencer operates according to the follow- 
ing procedure. 

Step 1: Load current theorem (24), (25). 
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Step 2: Transform theorem to equational form (26) via (33). 

Step 3: Execute proof according to figure 8. 

If the theorem logically follows from the Knowledge Base (i.e., it is true), 
the inferencer procedure will terminate on step 3 with actions . If the theorem 
does not logically follow from the Knowledge Base, the Adapter is activated, 
and the theorem is modified by the theorem Planner according to the strategy 
outlined above. This mechanism is the essence of reactivity in the agent. Be- 
cause of relaxation and convexity, this mechanism ensures that the estimatable 
set of the domain is strictly larger than the mechanism without this correction 
strategy. 

3.1.5 Knowledge Decoder: 
The function of the Knowledge Decoder is to translate knowledge data from 

the network into the agent's Knowledge Base by updating the inter- agent speci- 
fication clauses. These clauses characterize the second constraint in (33). Specif- 
ically, they express the constraints imposed by the rest of the network on each 
agent. They also characterize the global-to-local transformations (see [22]). 
Finally, they provide the rules for building generalized multipliers for incor- 
porating the inter-agent constraints into a complete unconstrained criterion, 
which is then used to build the cost-to-go function in the first expression in 
(33). A generalized multiplier is an operator that transforms a constrain into a 
potential term. This potential is then incorporated into the original Estimation 
Lagrangian of the agent which now accounts explicitly for the constraint. 

The Knowledge Decoder has a built-in inferencer used to infer the structure 
of the multiplier and transformations by a procedure similar to the one de- 
scribed for (14). Specifically, the multiplier and transformations are expanded 
in a rational power series in the algebra defined in (34). Then the necessary con- 
ditions for duality are used to determine the conjunctions of equational forms 
and a partial order expression needed to construct a theorem of the form of (26) 
whose proof generates a multiplier for adjoining the contraint to the Estimation 
Lagrangian of the agent as another potential. 

The conjunction of equational forms for each global-to-local transformation 
is constructed by applying the following invariant embedding principle: 

For each agent, the actions at given time t in the current interval, 
as computed according to (33), are the same actions computed at t 
when the formulation is expanded to include the previous, current, 
and next intervals. 

By transitivity and convexity of the criterion, the principle can be analyti- 
cally extended to the entire horizon. The invariant embedding equation has the 
same structure as the dynamic programming equation given in (33), but with 
the global criterion and global Hamiltonians instead of the corresponding local 
ones. 
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The local-to-global transformations axe obtained by inverting the global-to- 
local transformations, obtained by expressing the invariant embedding equation 
as an equational theorem of the form of (26). These inverses exist because of 
convexity of the relaxed Lagrangian and the rationality of the power series. 

It is important at this point to interpret the functionality of the Knowledge 
Decoder of each agent in terms of what it does. The multiplier described above 
has the effect of aggregating the rest of the system and the other agents into an 
equivalent companion system and companion agent, respectively, as viewed by 
the current agent. This is illustrated in Figure 9. 

The aggregation model (Figure 9) describes how each agent perceives the 
rest of the network. This unique feature allows us to characterize the scalability 
of the architecture in a unique manner. Namely in order to determine compu- 
tational complexity of an application, we have only to consider the agent with 
the highest complexity (i.e., the local agent with the most complex criterion) 
and its companion. 

4    Constructing Estimation Lagrangians. 

As described in the previous section, the Planner module of each agent A con- 
structs an Estimation Lagrangian L(t,x,x) such that the desired evolution of 
the system occurs when the system evolves along a curve x = C{t) which mini- 
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mizes Ä , . 

L L(t,x,x)dt (35) 
to 

where x(t0) = x0 and x(tQ+A) = zi. Here in local coordinates, I = (I
1
,...,I") 

and x = (i1,... ,xn). 
We would like to modify the agent's Estimation Lagrangian by adding a 

divergence free function to construct a Estimation Lagrangian with a special 
property that when we reach our desired estimation for the system that the 
resulting change in the estimation due to the flow is 0. That is, suppose that 
S(t,x) is a smooth function (C2 is enough). Then 

dS     dS , -A dS 
— = —- -p   >      -r-^XJ. (36) 
dt      dt     f- dx> v    ; 

Now suppose that we replace the agent's original Lagrangian by 

For any curve C(t) with C(£o) = xo and C(£o + A) = xi> ^et 

J(C)    =     /°"    L(t,C(t),C{t))dt (38) 
■/to 

J(<7)    =     / L(t,C(t),C(t))dt. (39) 
■/to 

Then 
.7(C) - J(C) = S{t + A, n) - 5(t. x0). (-10) 

Note that value of the left hand side of (40) does not depend on C so that that 
the curve C" which minimizes J{C) also minimizes J(C). 

We want to construct a geodesic field for agent .4. 

xj =rb>(i,x) for j = l,...,n (41) 

on the manifold M such that 

Z(t,x,i)    =   0 if xj =Tbj(t,x) for j = l,...,n (42) 

Z(t, i, ±)'   >    0 if otherwise. (43) 

Note that this a very strong condition which would ensure that evolving the 
system along a geodesic would result in no chage to our estimate. See (18). 

In this section we shall explore the conditions that such an 5 must satisfy 
and how we can construct the desired geodesic field. 

To this end, we note that if there exists a curve x = C(t) which minimizes 

/ 

to+A 
L(t,x,x)dt (44) 

'o 
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where x{t0) = x0 and x(t0 -r A) = x\, then L must satisfy the Euler-Lagrange 
equations. That is, let Ej be the operator 

1     dtKd±i'     dxJ 
for j - 1,. • •, n. Then L must statify the equations 

EJ{L)=0ioTJ = l,...,n. (45) 

This given, it will be useful for subsequent formulas to rewrite (45) in terms 
of the canonical momentum p7' and the Hamiltonian of the system H. That is, 
define „ 

p> = -TT-(i,x,i) for j = l,...,n. (46) 
axj 

We shall assume that 
*.<££) *0 (47) 

for all t,i,i. Given (47), we can use the Inverse Function theorem to solve for 
the ±i's in terms of x, t, and p: 

±*=tf'(i,x,p) j = l,...,n. (48) 

We then define the Hamiltonian H of the system by 
n 

H{t,x,p) = -L{t,x,x) + '£pihi(t,x,p). (49) 
7=1 

It then is easily verified that 

dJL    =    h>=±>, (50) 

8H dL , .... 
5*7    =    -M'"* (0l) 

(52) dH_    _    _dL 
dpi    ~       dt' 

It follows that the Euler-Lagrange equations are equivalent to the following. 

fL: + f4 = 0forj = l,...,n. (53) 
dt        ox' 

It follows from (42) and (43) that 

Z(i,x1,...,zn,ii>1 wn) =mimZ(t,x,x). (54) 

Thus the solution to (41) must satisfy 

°    =    W 
dL      dS 
d±i     dxJ 

,     dS 
=   ?-Jxl- 
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Thus when x> = V{t, x,p) = &{t, x) for j = 1,..., n. then 

•x        dS u     s Pj(t,Z,x) = Q^jtf'1) 

so that pj is a function of just t and x. Moreover it must be the case that 

0   =    L(t,x,x) 

Tf .,      8S      r^dS.j 

= i(*,x,*)-^-xyv 

and hence S satisfies 
|.W,x,|f)=0. (55) 

We claim that if the (41), (42), and (43) hold and S(i, x) is a function such 
that (55) holds and 

»--gc**)-&<«•*)■ (36> 

then the Wierstrass condition for the existence of a curve C{t) which is a strong 
minimum for (44). It then follows that we can construct an e-approximation to 
the geodesic fields via the techniques of [26]. 

To make our statement precise, we make the following definition, see [7]. 

Definition 4.1  The Weierstrass E-function of the functional 

J[y] =  /   F{x,y,y)dx, y(a) = A, y(b) = B (57) 
Ja 

the function of 3n + 1 variables: 

" Q f 

E(x,y,x,w) = F(x,y,w)-F(x,y,z) - £(«/* -*i)^r- (53) 
i=l 

Then the following result is proved in [7]. 

Theorem 4.2 Let 7 be a curve which is extremal for the functional J[y] of (57) 

and let 
yi = 1>i(x,y)fori = l,...,n (59) 

be a field for the functional J[y] of (57). Suppose that at every point (x,y) of 
some (open) region containing 7 and covered by the field (59), the condition 

E{x,y,ijj,w)>Q (60) 

is satisfied for every finite vector w = (wl,... ,wn).   Then J[y] has a strong 
minimum for the extremal 7. 
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Now under our assumptions, 

xj    =   hi{t,x,p) (61) 

=   ilP{t,x) for j = l,...,n. 

Now take ft of both sides of (54), we get 

dpi       d2S      A    d2S + 
dt ~ dtdxJ " ^ dxkdxJX ' (62) 

Then taking the partial derivative with respect to xj of both sides of (55), we 
get 

dtdxJ     dx>     ^ dpk dxWx" 

However since ±j = §|r for ;' = 1,... n, we can rewrite (63) as 

(65) 

■ dtdxi     dx>   ' f- dxidx 

Combining (62) and (64), we get that 

dt  ~    dxi 

for j = 1,... n. Note that this implies the system can be characterized by the 
equations 

±i = ¥Lj = l,...,n (66) 

p> = J§i = l,...,n. (67) 

Next observe that conditions (42) and (43) imply that 

^_|^_y |^>0 (68) 

with equality holding only if 

xj =ipj(t,x). 

Then (55) can be rewritten as 

§-£<*,*,*)+!; Jl*=o. (69) 
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Solving for §f in (69) and substituting into (68). we set that 

L(t,x,x) - L(t,x, tf) + £ WZ& ~ ^ - ° (70) 
dxi 

Thus since M- = p> = §£, we can derive that 

I(t,ar,i)-I(t,ar,^)+f;^-(ii-^)>0 (71) 

Next define the Wierstrass function E by 
n 

dxJ 

Then (71) says that 
E(t,x,ti,x)>0. (73) 

Moreover by applying Mean Value Theorem twice, we get that 

E(t,x,il,,x) = \^J^(t,z,z)&-V)(±k-*k) (74) 

for some z = 9x-r(l- 9)w with 0 < 9 < 1. Thus if £(i, i, $, x) > 0, it must be 
that 

detl-j^r) > 0. 

5    Agent Synchronization 

Agent synchronization is based on the following result. 

Theorem 5.1 For any agents AQ and Ai, let LQ and L\ be the corresponding 
agent Estimation Lagrangian where for each i, Li is a function of the state 
Xi, ±i, and the agent clock time t. We can explicitly construct state and clock 
transformation functions ^ and *?x from the Noether invariance relations 
such that for any given time interval I and e > 0, 

I [Lo(x0,xo,t0) -Li(<a°x
1(xo,to),n1(xo,io),W{xo,to))}dto < e.       (75) 

The significance of this result is that one can explicitly construct transfor- 
mation function to coherently fuse sensor data. That is, agents AQ and Ai may 
have different models of the plant. Thus for agents A0 and Ai to be able to 
communicate with each other, we need to construct transformations functions 
which allow agent AQ to interprete agent Ai's state estimation. The theorem 
says that such transformation functions not only exist but can be computed for 
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the Noether invariance relations. Moreover if agent Ao realizes that his state 
is incompatible with the state information given by agent Ax, agent ,40 goes to 
the adaptation loop to correct the incompatibility. 

To illustrate Theorem 5.1, suppose that there is a global state estimation 
function for the plant L(t,x,x) and we have two agents. Agent 1 with its Esti- 
mation LagrangianLi(ri,:ri,xi) and Agent 2 with its state estimation function 
Lo(h,x<>,X2)- Moreover assume that we have state and clock transition func- 
tions for Agent i, i — 1,2, given by 

xj    =•   x{(t,x,w) for j = l,...,n (76) 

U    =   U(t,x,w) (77) 

where w — (wl,... ,wn) is a set of parameters for the transformation. That is, 
we assume 

Li{xi(t,x,w),Xi(t,x,w),Xi{t,x,w))=L(t,x,x) (78) 

for i = 1,2. 
Next we shall state the Noether Invariance relations referred to in Theorem 

5.1. We first need some notation. First we define two classes of infinitesimal 
transformations to each Agent i. 

Mu=0=^(r,x) (79) 

and „ 

01-0 = n.* (SO) 
Next let Eij, = 1,..., n, be the Euler-Lagrange operators for £,*. That is, let 

This given, the Noether Invariance Relations are given by 

for A; = 1,. ..,7i 
The idea is that if the state estimation Lagrangian Li has an extremal, i.e. 

if there exists a curve Xi(t) = d(t) which minimizes 

L{t,.x,.±i)dtz (33) 

where x{t0) = xQ and x[t0 + A) = n, then L must satisfy the Euler-Lagrange 
equations Ei,j{Li) = 0 for j = 1,..., n*. In that case the left hand side of the 
equations in (82) are 0 and hence there are constants c^,* such that 

n< fl r i 

/. 
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for k = 1,.. •, n There are two important aspects about (84). First note that 
given the constants a,k, we can solve for the infinitesimals r^ and 9\k and 

integrate to recover the desired transformation arj and U. We will illustrate 
this type of calculation with a simple example below. Second, note that we 
can monintor the failure of sychronization of the state estimation Lagrangians 
by simply observing that the left hand side of (84) is not a constant. If the 
left hand side of (84) is not a constant, then we know that the current agent 
Lagrangian is not compatible with the system Lagrangian so that Agent i would 
use the Adapter to reconstruct his Estimation Lagrangian. 

Example 5.1 A simplified range model of radar returns has the following sys- 
tem Lagrangian. 

£ = '2(y-y)- (85) 

Now suppose that Agent 1 has infinitesimal transformations 

tl=t + r{x,t)w (86) 

ii=i-i- 9(x, t)w (87) 

Then from (82), we have 

x s dd 
{x--j)n-tx>+tx(- + -x) (88) 

-x&-xdx- + t{x " T%^ s^ = °- 
Collecting terms, we obtain the following relations. 

*° : r+t9+ti§H (89) 

, dr     t2 dr     „ ..,, 
*"   :  tTJrtTx~-.Tt=Q (91) 

i3    :    |^=0 (92) 
ox 

Note that by (92), r = r(t) is just a function oft. Also (92) and (90) imply that 
|| = 0 so that 9 = 9(x) is just a function of x.  This means that (89) and (91) 
are just ordinary differential equations which one can easily solve via standard 
power series methods to show that 

T   =   t (93) 

6   =    -\x. (94) 

Hence 

ti    =   t + tw (95) 

xi    =   x - -xw. (96) 
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6     Conclusions 
We have shown that our MAHEA architecure is an effective mechanism to solve 
various problems of estimating a process in which the data available is dynamic, 
noisy, and given in a multiplicity of representations. A MAHEA agent network 
for estimating plant state is an efficient mechanism for state estimation which is 
extensible, robust, scalable, allows crosschecking, and supports hetereogeneous 
information. 

Deployment of an agent based system is very simple. As soon as a new 
source of information is available, a new estimation agent is spawned whose 
Knowledge Base is a model of the plant covered by that source (extensibility). 
Moreover no common representation of the data is required so that the system 
supports hetereogeneous information sources. Thus our architecture allows us to 
incorporate existing models and estimation techniques. The built-in invariance 
condition tests for the validity of the data (crosschecking). 

We have shown that the existing theory of hybrid systems and relaxed vari- 
ation optimization can be adapted to the state estimation problem for the plant 
bv constructing a Lagragian which becomes 0 at points which correspond to 
consistent estimates of the plant and is positive at points which are not consis- 
tent. This property ensures that when an agent reaches consistent estimates of 
the plant, the evolution of the system produced by the flow of the corresponding 
o-eodesic field is adapted to the current information of the plant as viewed by 
each agent. 

Another key result for agent synchronization is a theorem which we call the 
Theveninn Theorem which states in a network with many agents, an individual 
agent A can view the rest of the sensor agents as a single aggreagated agent 
C(A) called .4's companion agent. Since an agent sees the rest of the estimate 
agent network as a single equivalent estimation agent, the architecture maintains 
linear complexity even as more agents are added. Details of these results will 
appear in a future report 

Finally the robustness of the sensor agent's estimates follows from the fact 
that each MAHEA agent is computed by a finite state machine which is Lya- 
punov stable because the mapping induced by an agent is a contraction mapping. 

We note that the techniques introduced in this paper for synchronization and 
consistency of state estimates can be adapted to solve synchronization problems 
for our Mutiple Agent Hybrid Control Architecture. Again details will be given 
a future report 

References 
[1] Antsaklis, P., Kohn, W., Nerode, A, and Sastry, S. eds., Hybrid Systems 

II, Lecture Notes in Computer Science vol. 999, Springer-Verlag, (1995). 

[2] Crossley, J.N., Remmel, J.B., Shore, R.A. and Sweedler, M.E., Logical 
Methods Birkhauser, (1993). 

32 



i'3] Dodhiawala. R.T., V. Jagoenathan and L.S. Baum, "Erasmus System De- 
sign: Performance Issues" Proceedings of Workshop on Blackboard Systems 
Implementation Issues, AAAI, Seattle, WA., July 1987. 

[4] Garcia, H.E. and A. Ray "Nonlinear Reinforcement Schemes for Learning 
Automata" Proceedings of the 29th IEEE CDC Conference, Vol. 4, pp 
2204- 2207, Honolulu, HA, Dec. 5-7, 1990. 

[5] Ge, X., Kohn, W., Nerode, A. and Remmel, J.B., "Algorithms for Chatter- 
ing Approximations to Relaxed Optimal Control. MSI Tech. Report 95-1, 
Cornell University. (1995) 

[6] Ge, X., Kohn, W., Nerode, A. and Remmel, J.B., "Feedback Derivations: 
Near Optimal Controls for Hybrid Systems", to appear in Hybrid Systems 
III, Springer Lecture Notes in Computer Science. 

[7] Gelfand, I.M. and Fomin, S.V., Calculus of Variations, Prentice Hall, 1963. 

[8] Grossman. R.L., Nerode, A., Ravn, A. and Rischel, H. eds., Hybrid Systems, 
Lecture Notes in Computer Science 736, Springer-Verlag, (1993). 

[9] Kohn, W., "A Declarative Theory for Rational Controllers" Proceedings of 
the 27th IEEE CDC, Vol. 1, pp 131-136, Dec. 7-9, 1988, Austin, TX. 

[10] Kohn, W., "Application of Declarative Hierarchical Methodology for the 
Flight Telerobotic Servicer" Boeing Document G-6630-061, Final Report 
of NASA- Ames research service request 2072, Job Order T1988, Jan. 15, 
1988. 

[11] Kohn, W., "Rational Algebras; a Constructive Approach" IR&D BE-499, 
Technical Document D-905-10107-2, July 7, 1989. 

[12] Kohn, W., "The Rational Tree Machine: Technical Description k Mathe- 
matical Foundations" IR&D BE-499, Technical Document D-905-10107-1, 
July 7, 1989. 

[13] Kohn, W., "Declarative Hierarchical Controllers" Proceedings of the Work- 
shop on Software Tools for Distributed Intelligent Control Systems, pp 
141-163, Pacifica, CA, July 17-19, 1990. 

[14] Kohn, W., "Declarative Multiplexed Rational Controllers" Proceedings of 
the 5th IEEE International Symposium on Intelligent Control, pp 794-803, 
Philadelphia, PA, Sept. 5, 1990. 

[15] Kohn, W., "Declarative Control Architecture" CACM Aug 1991,Vol34, 
No8. 

[16] Kohn. W., "Advanced Architectures and Methods for Knowledge-Based 
Planning and Declarative Control" IR&D BCS-021, ISMIS'91, Oct. 1991. 

33 



[17] Kohn, W. and Murphy, A., "Multiple Agent Reactive Shop Floor Control" 
ISMIS'91, Oct. 1991. 

[18] Kohn W., "Multiple Agent Inference in Equational Domains Via Infinites- 
imal Operators1' Proc. Application Specific Symbolic Techniques in High 
Performance Computin g Environment". The Fields Institute, Oct 17-20 
1993. 

[19] Kohn W., "Multiple Agent Hybrid Control" Proc of thhe NASA-ARO 
Workshop on formal Models for Intelligent Control, MIT .sept 30- Oct2, 
1193. Will appear as a paer in IEEE Ac. 

[20] Kohn, W. and Nerode, A., "Multiple Agent Declarative Control Architec- 
ture" Proc. of the workshop on Hybrid Systems, Lygby, Denmark, Oct 
19-21, 1992. 

[21] Kohn, W. and Nerode, A., "Foundations of Hybrid Systems" In Hybrid 
Systems, Nerode. A, R, Grossman Eds. Springer Verlag series In Computer 
Science #726, 

New York, 1993. 

[22] Kohn W., and Nerode, A., "Multiple-Agent Hybrid Systems" Proc. IEEE 
CDC 1992, vol 4, pp 2956, 2972. 

[23] Kohn. W. and Nerode. A., "An Autonomous Systems Control Theory: An 
Overview" Proc. IEEE CACSD'92, March 17-19, Napa, Ca.,pp 200- 220. 

[24] Kohn W„ and Nerode A. "Models For Hybrid Systems: Automata, Topolo- 
gies, Controllability, Observability" In [8], (1993) 317-356. 

[25] Kohn W. and Nerode, A., "Multiple Agent Hybrid Control Architecture" 
In Logical Methods (J. Crossiey, J. B. Remmel, R. Shore, M. Sweedler, 
eds.), Birkhauser, (1993) 593-623. 

[26] Kohn, W., Nerode. A. and Remmel, J.B., " Hybrid Systems as Finsler 
Manifolds: Finite State Control as Approximation to Connections", In [1], 
(1995) 

[27] Kohn, W., Nerode, A. and Remmel, J.B., "Continualization: A Hybrid 
Systems Control Technique for Computing", to appear in the proceedings 
of CESA'96. 

[28] Kohn, W., Nerode, A. and Remmel, J.B., "Feedback Derivations: Near 
Optimal Controls for Hybrid Systems", to appear in CESA'96. 

[29] Kohn, W. and T. Skillman, "Hierarchical Control Systems for Autonomous 
Space Robots" Proceedings of AIAA Conference in Guidance, Navigation 
and Control, Vol. 1, pp 382-390, Minneapolis, MN, Aug. 15-18, 1988. 

[30] Kowalski, R., "Logic for Problem Solving" North Holland, NY, 1979. 

34 



[31] Kuich. W. and Salomaa. A., "Semirings. Automata. Languages'' Springer 
Verlag, NY., 1985. 

[32] Lloyd, J.W. "Foundations of Logic Programming" second extended edition, 
Springer Verlag, NY, 1987. 

[33] Liu, J.W.S., "Real-Time Responsiveness in Distributed Operating Systems 
and Databases" proceedings of the Workshop on Software Tools for Dis- 
tributed Intelligent Control Systems, Pacifica, CA.. July 17-19, 1990, pp 
185-192. 

[34] Nii, P.H., "Blackboard Systems: The Blackboard Model of Problem Solving 
and the Evolution of Blackboard Architectures" the AI Magazine, Vol. 7, 
No. 2, Summer 1986, pp 38-53. 

[35] Padawitz, P., "Computing in Horn Clause Theories" Springer Verlag, NY, 
1988. 

[36] Robinson, J.A., "Logic: Form and Function" North Holland, NY, 1979. 

[37] Skillman, T. and Kohn, W., et.al, "Class of Hierarchical Controllers and 
their Blackboard Implementations" Journal of Guidance Control ic Dy- 
namics, Vol. 13, Nl, pp 176-182, Jan.-Feb., 1990. 

[38] Warner, F.W., Foundations of Differential Manifolds and Lie Groups, 
Scott-Foresman, Glenview, 111. 

[39] Warga, K., "Optimal Control of Differential and Functional Equations" 
Academic Press, NY., 1977. 

[40] Young, L.C., "Optimal Control Theory" Chelsea Publishing Co., NY, 1980. 

35 


